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Crossflow instability of a three-dimensional boundary layer is a common cause of
transition in swept-wing flows. The boundary-layer flow modified by the presence of
finite-amplitude crossflow modes is susceptible to high-frequency secondary instabil-
ities, which are believed to harbinger the onset of transition. The role of secondary
instability in transition prediction is theoretically examined for the recent swept-wing
experimental data by Reibert et al. (1996). Exploiting the experimental observation
that the underlying three-dimensional boundary layer is convectively unstable, non-
linear parabolized stability equations are used to compute a new basic state for the
secondary instability analysis based on a two-dimensional eigenvalue approach. The
predicted evolution of stationary crossflow vortices is in close agreement with the ex-
perimental data. The suppression of naturally dominant crossflow modes by artificial
roughness distribution at a subcritical spacing is also confirmed. The analysis reveals
a number of secondary instability modes belonging to two basic families which, in
some sense, are akin to the ‘horseshoe’ and ‘sinuous’ modes of the Görtler vor-
tex problem. The frequency range of the secondary instability is consistent with that
measured in earlier experiments by Kohama et al. (1991), as is the overall growth of the
secondary instability mode prior to the onset of transition (e.g. Kohama et al. 1996).
Results indicate that the N-factor correlation based on secondary instability growth
rates may yield a more robust criterion for transition onset prediction in comparison
with an absolute amplitude criterion that is based on primary instability alone.

1. Introduction
First-principles-based boundary-layer transition prediction requires the identifi-

cation and prescription of the free-stream and wall disturbance field, quantitative
determination of boundary-layer receptivity to this external forcing, computation
of linear/nonlinear amplification of disturbances internalized in the boundary layer
and careful consideration of the associated mechanisms of breakdown to turbu-
lence. Therefore, transition prediction for configurations of practical significance is a
daunting task, forcing designers to use simplified methods. Currently used transition
prediction tools are based on the so-called eN criterion that correlates the onset of
transition with the logarithmic amplification ratio N of the most amplified linear
instability mode. However, it is obvious that the receptivity phase, which determines
the initial amplitudes of the boundary-layer disturbances (Tollmien–Schlichting (TS),
crossflow, Görtler, Mack modes, etc.), needs to be accounted for in order to obtain
accurate predictions of the transition onset location. In principle, the eN criterion
can be combined with any available information on the receptivity process, so as to
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devise a new criterion that is based on the maximum local amplitude of the primary
modes. In fact, the recently emerged parabolized stability equations (PSE) method-
ology could be used to even incorporate the effect of nonlinearity on the primary
disturbance amplitude. An amplitude-based criterion then can be used to correlate
transition onset.

Unfortunately, in spite of the extra physics included in the absolute amplitude crite-
rion, a criterion of this type is deemed unsatisfactory, at least for the swept-wing case.
In the absence of attachment-line contamination (Gaster 1967; Poll 1979), crossflow
instability (Gregory, Stuart & Walker 1955) which can manifest itself in the from of
both stationary and travelling disturbances (Poll 1985) is the dominant instability of
the three-dimensional boundary layer on a swept wing. Experimental evidence from
low-speed flows suggests that, in low-disturbance environments, stationary crossflow
modes (commonly known as crossflow vortices) constitute the dominant primary
instability as a result of the unavoidable surface roughness which can directly ex-
cite these stationary modes (e.g. Radeztsky et al. 1993). The apparently surprising
forecast vis-à-vis the absolute amplitude criterion is linked to the strongly stabilizing
influence of nonlinearity on stationary crossflow modes. The crossflow disturbance
amplitude changes rather slowly with distance across the region of nonlinear distur-
bance development. Consequently, sensitivity of the predicted transition location to
any uncertainties in the input data and/or the calculation process is bound to be
substantial. A more robust criterion for transition correlation is, therefore, required.

The experimental observations by Kohama, Saric & Hoos (1991) in the Arizona
State University (ASU) unsteady wind tunnel, and by Kohama, Onodera & Egami
(1996) in a different facility, clearly show that the onset of laminar–turbulent transition
is preceded by the appearance of rapidly growing high-frequency disturbances that
ride on the quasi-saturated stationary vortex field. Measurements show that in the
short streamwise region just upstream of the transition location, where the high-
frequency modes are observed, the logarithmic amplification factor for these modes
can approach a value of almost 9, in sharp contrast to the quasi-saturated evolution of
stationary crossflow modes and the relatively slow growth of low-frequency travelling
crossflow modes. In fact, Kohama et al. (1996) argue that ‘the secondary instability
plays a more important role than the primary instability in driving the boundary
layer directly to a fully turbulent state’. This raises the interesting possibility of being
able to predict the transition location on the basis of secondary instability analysis
for a modified basic state that consists of the underlying boundary-layer flow plus
the large-amplitude, quasi-saturated stationary crossflow vortices.

In this paper, we explore the above possibility within the limited scope of a small
set of experiments performed in the low-speed ASU wind tunnel. For the conditions
of the ASU experiment, we first compute (following the approach adopted by Malik
& Li 1992, and Malik, Li & Chang 1994) the nonlinear evolution of stationary
crossflow disturbances and find good agreement with the experimental data. The
boundary-layer flow distorted by the presence of crossflow vortices is analysed for
secondary instability modes. In particular, our aim is to uncover the relation, if any,
between the linear growth of secondary instability modes and the observed locations
of transition onset. Towards this goal, an N-factor correlation based on secondary
instability modes has been developed and the pros and cons of this methodology
relative to other transition prediction criteria are evaluated in terms of the respective
accuracy levels and computational resources required.

In addition to this somewhat practical but clearly important goal, the paper studies
secondary instability of stationary crossflow vortices. This part of our study is similar
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to the earlier work done, for example, by Yu & Liu (1991, 1994), Hall & Horseman
(1991) and Li & Malik (1995), but for Görtler vortices. Görtler vortices are counter-
rotating vortices present in two-dimensional boundary layers over concave surfaces,
while crossflow vortices are co-rotating and relevant in three-dimensional boundary
layers. The present work shows that both seem to be subject to very similar secondary
instabilities.

It is to be noted that we assume that the three-dimensional boundary layer we
consider here is convectively unstable. Although some recent work (Lingwood 1995)
has indicated that three-dimensional boundary layers may become absolutely unstable
under certain circumstances, absolute instability is not an issue for the conditions of
the ASU experiment. In swept-wing flows, ‘pinch’ points only occur in one spatial
dimension while absolute instability requires pinch points to occur simultaneously in
(α, ω)- and (β, ω)-planes. Therefore, the phrase ‘absolute instability’ can apply to the
swept-wing flows (at least the infinite swept) only in a limited sense, e.g. ‘chordwise
absolute instability’. The works of Lingwood (1997) and Lin, Li & Malik (1999) (see
also Malik 1997) show that, in swept-wing boundary layers, pinch points occur in the
chordwise direction near the leading edge but only at relatively large leading-edge
Reynolds numbers (R > 540). Therefore, the underlying boundary-layer flow in the
ASU experiment must be convectively unstable although, of course, the possibility
that the mean flow distorted by the primary modes might be absolutely unstable
cannot be ruled out without further investigation. Present results suggested a possible
degeneracy of the temporal secondary instability modes. Mode crossings of this type
have been previously investigated in the context of a flat-plate boundary layer (Koch
1992) and would only lead to algebraic growth.

The layout of the rest of the paper is as follows: we give a brief introduction to the
experimental data in § 2; the numerical approach is given in § 3; results of the analysis
are presented in § 4; § 5 gives a discussion of the results and the paper is concluded
in § 6.

2. The ASU experiment
The linear and nonlinear evolution of stationary crossflow vortices on a 45◦ swept

NLF(2)-0415 airfoil has recently been studied by Professor Saric and his coworkers
in the Arizona State University Unsteady Wind Tunnel (Reibert et al. 1996; Carrillo,
Reibert & Saric 1996). At the−4◦ angle-of-attack configuration employed during these
experiments, the boundary-layer flow on the upper surface of the airfoil is subcritical
to Tollmien–Schlichting instability waves and, hence, the laminar–turbulent transition
process is dominated by the crossflow instability. A full-span array of roughness
elements near the attachment line was used to introduce a spanwise-periodic pattern
of stationary crossflow modes into the boundary layer. The downstream evolution of
these modes was followed with detailed hot-wire measurements and naphthalene flow
visualization. The parametric study included a systematic variation in both roughness
spacing and roughness height at a selected set of Reynolds numbers, Re = U∞C/ν
(where U∞ is the free-stream velocity, C the airfoil streamwise chord and ν the kine-
matic viscosity). Let λz be the roughness spacing, k the roughness height, and (X∗/C)tr
the position along the wing chord where transition occurs. Table 1 summarizes the
test conditions examined by Reibert (1996), and Carrillo et al. (1996), respectively.

The following significant observations can be made from the data in table 1:
(i) The surface roughness spacing tends to have a strong influence on the transition

onset location. For a fixed set of flow conditions, the transition onset location can
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Case Re (×10−6) λz (mm) k (µm) (X∗/C)tr

(a) I-A 2.4 12 6 0.52
I-B 2.4 12 18 0.51
I-C 2.4 12 48 0.49
I-D 3.2 12 6 0.32
I-E 3.2 12 18 0.30
I-F 3.2 12 48 0.28
I-G 2.4 36 6 0.49

(b) II-A 2.4 18 6 0.50
II-B 2.4 18 18 0.50
II-C 2.4 18 48 0.50
II-D 2.4 NA NA 0.65
II-E 2.4 8 6 0.70
II-F 2.4 8 48 0.59

Table 1. Key data points from (a) Reibert (1996) and (b) Carrillo et al. (1996).

vary from 50% chord to 70% chord, depending on the spectral composition of the
surface roughness distribution.

(ii) At a fixed roughness spacing that corresponds to the spanwise wavelength of
the linearly most unstable stationary mode which, from linear PSE computations,
is shown to be approximately 12 mm, increasing the roughness height (and, hence,
the initial crossflow disturbance amplitude) produces an insignificant change in the
transition onset location. This finding is common to both Reynolds numbers inves-
tigated during these experiments, although the overall location of transition onset is
considerably farther upstream at the higher Reynolds number.

(iii) The growth of the naturally dominant stationary mode can be suppressed via
artificial excitation of another stationary mode with a suitably different wavelength
(e.g. Case II-E). In particular, by choosing a shorter roughness spacing, it is possible
to delay the onset of transition beyond that in the natural case.

The detailed hot-wire measurements that accompanied the transition onset data in
table 1 demonstrated the strong influence of nonlinear disturbance interactions on
the amplitude evolution of stationary crossflow vortices over a significant range of
chordwise locations.

Cases I-A–I-E, and II-E from table 1 have been selected for the current analysis.
The first five cases illustrate both the relative insensitivity of transition onset location
to roughness height for a fixed Reynolds number and fixed roughness spacing, and the
upstream movement in the transition location when the Reynolds number is increased.
Case II-E shows that transition can be delayed by exciting short-wavelength crossflow
modes that do not undergo adequate amplification to cause the onset of transition,
but can still suppress the growth of the naturally occurring stationary crossflow
modes.

3. Numerical approach
3.1. Basic flow

We use a body-fitted orthogonal coordinate system where x∗, y∗ and z∗ denote
chordwise, wall-normal and spanwise directions, respectively. For infinite swept wings,
the basic flow is independent of the spanwise coordinate z∗. Therefore, quasi-three-
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dimensional boundary-layer equations can be used to obtain the mean flow. The
first-order boundary-layer equations can be written as

U∗
∂U∗

∂x∗
+ V ∗

∂U∗

∂y∗
= − 1

ρ∗
∂P ∗

∂x∗
+ ν∗

∂2U∗

∂y∗2
, (3.1a)

U∗
∂W ∗

∂x∗
+ V ∗

∂W ∗

∂y∗
= ν∗

∂2W ∗

∂y∗2
, (3.1b)

∂U∗

∂x∗
+
∂V ∗

∂y∗
= 0, (3.1c)

where U∗, V ∗ and W ∗ are the velocity components in the chordwise, wall-normal
and spanwise directions, respectively, and P ∗ is pressure, ρ∗ the density and ν∗ the
kinematic viscosity. A similarity-transformed form of these equations was solved by
a finite-difference method (Wie 1992) for the prescribed pressure distribution and
subject to boundary conditions

y∗ = 0, U∗ = V ∗ = W ∗ = 0, (3.2a)

y∗ → ∞, U∗ → U∗e , W ∗ →W ∗
e . (3.2b)

All lengths and the mean flow quantities are made non-dimensional by suitable
scales. Hence, we write

x = x∗/l, y = y∗/l, z = z∗/l,

u = U∗/U0, v = V ∗/U0, w = W ∗/U0, p = P ∗/ρ∗U2
0 ,

where l and U0 represent the reference length based on boundary-layer thickness at
a fixed location and the chordwise boundary-layer edge velocity at the same location,
respectively. We note that x∗ in (3.1) above represents chordwise surface distance
while X∗ in table 1 is the Cartesian coordinate defined such that X∗/C = 1 at the
trailing edge of the wing with chord length C . we also define a Reynolds number R as

R =
U0l

ν∗
.

3.2. Parabolized stability equations

The above basic flow is perturbed by fluctuations in the flow, i.e. the total field can be
decomposed into a mean value (boundary-layer solution) and a perturbation quantity

u = u+ ũ, v = v + ṽ, w = w + w̃, p = p+ p̃,

where the tilde denotes a perturbation quantity. We define φ as

φ = (ũ, ṽ, w̃, p̃), (3.3)

where p̃ is the pressure perturbation and ũ, ṽ, w̃ represent x, y, z components of
velocity perturbations, respectively. The nonlinear disturbance equations can then be
derived from Navier–Stokes equations and written as

Γ
∂φ

∂t
+ A

∂φ

∂x
+ B

∂φ

∂y
+ C

∂φ

∂z
+ Dφ−

[
Ex
∂2φ

∂x2
+ Ey

∂2φ

∂y2
+ Ez

∂2φ

∂z2

]
= F , (3.4)

where the left-hand side contains only linear operators operating on the disturbance
vector φ and the right-hand-side forcing vector F is due to nonlinear interaction and
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includes all nonlinear terms associated with the disturbances. The right-hand side is
given as

F = −Ã∂φ
∂x
− B̃ ∂φ

∂y
− C̃ ∂φ

∂z
+ H̃φ. (3.5)

In the above, Γ is the diagonal matrix [1, 1, 1, 0] while A, B , C are given as

A =

 u 0 0 1
0 u 0 0
0 0 u 0
1 0 0 0

 , B =

 v 0 0 0
0 v 0 1
0 0 v 0
0 1 0 0

 , C =

 w 0 0 0
0 w 0 0
0 0 w 1
0 0 1 0

 ,
and Ã, B̃ , C̃ are similar to A, B , C except that the overbar is replaced with a tilde
and all ones are dropped. The coefficient matrices, D , Ex, Ey, Ez are given as

D =


ux uy 0 0

vx − 2κu vy 0 0

wx wy 0 0

0 0 0 0

 , Ex = Ey = Ez =


1/R 0 0 0

0 1/R 0 0

0 0 1/R 0

0 0 0 0

 .
The only non-zero component of the H̃ matrix, for the present application, is

H̃21 = κũ

where κ denotes the wall curvature. Any other curvature terms are of smaller order
and can be dropped.

We assume that the given disturbance is periodic in time and in the spanwise
direction; thus, the disturbance function φ can be expressed by the following truncated
Fourier series:

φ =

M∑
m=−M

N∑
n=−N

χmn(x, y) ei(nβz−mωt) (3.6)

where M and N represent one-half the number of modes used in the analysis. Let
λz be the dimensional spanwise wavelength and f be the dimensional disturbance
frequency. The non-dimensional spanwise wavenumber is then denoted by β = 2πl/λz
and ω = 2πlf/U0 is the non-dimensional disturbance frequency. In the parabolized
stability equation (PSE) approach (Herbert 1991; Bertolotti, Herbert & Spalart 1992;
Chang et al. 1991), the variation of disturbance field along the chordwise direction
(x) is decomposed into a fast-varying wave part and an amplitude function part:

χmn(x, y) = Ψmn(x, y)Amn(x), (3.7a)

Amn(x) = exp

(
i

∫ x

x0

αmn(x) d(x)

)
, (3.7b)

where Ψmn is the amplitude function for the Fourier mode (mω, nβ) defined as
Ψmn = (ûmn, v̂mn, ŵmn, p̂mn) and αmn is the associated streamwise wavenumber. The
governing parabolized stability equations for mode (m, n) can be written as

GmnΨmn + Amn
∂Ψmn

∂x
+ Bmn

∂Ψmn

∂y
= Ey

∂2Ψmn

∂y2
+ F mn/Amn (3.8)
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where matrices Emn, Amn and Bmn are given by

Gmn = −imωΓ+ iαmnA+ inβC + D − Ex
(

i
dαmn
dx
− α2

mn

)
+ n2β2Ez,

Amn = A− 2iαmnEx,

Bmn = B .

In the above, the small terms such as dαmn/dx can be neglected with essentially no
effect on the results. The nonlinear forcing function F mn is the Fourier component of
the total forcing, F , and can be evaluated by the Fourier series expansion

F (x, y, z, t) =

M−1∑
m=−M

N−1∑
n=−N

F mn(x, y) ei(nβz−mωt). (3.9)

The Fourier decomposition in (3.7) can be done by using the fast Fourier transform
(FFT) of F , which is evaluated numerically in the physical space.

The boundary conditions for the above equations are

ûmn = v̂mn = ŵmn = 0, y = 0,

ûmn → 0, v̂mn(m 6= 0, n 6= 0)→ 0, ŵmn → 0, y →∞.
No free-stream boundary condition is required for the mean flow correction term v̂00.

For small disturbances, nonlinear forcing F can be set to zero and the linear PSEs
(after dropping the subscript 11) can be written as

Gψ + A
∂ψ

∂x
+ B

∂ψ

∂y
= Ey

∂2ψ

∂y2
. (3.10)

The solution of these equations requires the prescription of streamwise wavenumber
α (see (3.7b)), which is determined by the following iterative procedure:

αnew = αold − i

∫
q†
∂q

∂x
dy
/∫
|q|2 dy, (3.11)

where q = (û, v̂, ŵ) and † represents complex conjugate. As noted in Li & Malik
(1996, 1997), associated with marching solution of (3.8) is the requirement that the
term ∂p̂/∂x be set to zero in the equation. Alternatively, large marching step sizes are
required for a stable marching solution. Numerical experiments show that dropping
the ∂p̂/∂x term does not introduce significant error in the solution.
N-factors for the eN correlation can be computed using

N =

∫ x

x0

σ dx, (3.12)

where σ is the disturbance growth rate and x0 is the location of the onset of instability.
For primary instability, the growth rate is taken to be σ(x) = −Im(α(x)) where α is the
converged value from (3.11). For N-factors based upon secondary instability, growth
rates are computed using the eigenvalue computations discussed in the subsection
below.

3.3. Secondary instability analysis

The secondary instability analysis is performed locally at a fixed chordwise location
using the temporal stability concept. Spatial analysis would be computationally more
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involved and appeared to be outside the scope of the computational resources
available to us. We rotate the coordinate system from (x, y, z) to (x1, x2, x3) where x1

and x3 are aligned with the crossflow vortex and wave vector directions, respectively,
and x2 = y. The velocity components (boundary-layer plus crossflow disturbance) in
the rotated coordinate system are denoted by U1, U2, and U3 along the x1, x2, and x3

directions, respectively.
We assume that the basic flow varies slowly along the x1-axis and invoke the

quasi-parallel assumption. The curvature of the vortex is also neglected. We consider
a harmonic secondary disturbance of the form

φ̃(x1, x2, x3, t) = φ′(x2, x3) ei(αsx1−ωst) + c.c., (3.13)

where αs and ωs are the wavenumber along x1 and frequency of the secondary
disturbance respectively. In the temporal framework, αs is real and ωs is complex. If
ωsi > 0, the secondary disturbance is unstable. For stationary crossflow vortices, the
basic flow does not vary with time; therefore, the eigenfunction φ′ is a function of
(x2, x3) only. For a travelling crossflow disturbance, we use a coordinate system which
convects with the wave; therefore, the disturbance appears stationary.

Using (3.13), one can derive a set of quasi-parallel, viscous, linear stability equations
(see Malik et al. 1994) which yield eigenfunction structure in both x2- and x3-
directions. We use the following boundary conditions at the wall and in the free
stream:

u1 = u2 = u3 = 0, x2 = 0, (3.14a)

u1 → 0, u2 → 0, u3 → 0 as x2 →∞. (3.14b)

The computational domain is taken to be one wavelength of the crossflow disturbance
in the x3-direction and periodic boundary conditions are used

φ′(x2, x3) = φ′(x2, x3 + λp), (3.14c)

where λp is the wavelength of the primary disturbance in the rotated coordinates
obtained from α (3.11) and β (3.6). The governing equations along with the boundary
conditions (3.14) constitute an eigenvalue problem governed by partial differential
equations in two dimensions. Therefore, we call this a two-dimensional eigenvalue
problem as in Lin & Malik (1996). The eigenvalue problem ωs = ωs(αs) is numerically
solved by using the Krylov subspace method (Lin, Wang & Malik 1996) which yields
a number of eigenvalues which are then purified/confirmed by using the inverse
Rayleigh iteration procedure.

4. Results and analysis
As stated in § 3.1, boundary-layer profiles were computed by using a finite-difference

method. These calculations were carried out with both the theoretically determined
pressure distribution (computed with the MCARF code (Stevens, Goradia & Braden
1971) and provided to us by Dr Reibert of Arizona State University) and that
measured in the experiment (figure 1).

Although the PSE and secondary instability computations are carried out by solving
the non-dimensional form of equations, comparisons require that the computational
results be converted to appropriate dimensional quantities. In what follows, we will
use a superscript ∗ to indicate that the particular quantity is dimensional. Here, the
results are first presented for the N-factors based on primary instability, followed
by the nonlinear evolution of stationary disturbances. The mean flow modulated by
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Figure 1. Comparison between computed and measured pressure coefficient, Cp, distributions.

Stationary
Travelling crossflow modes crossflow modes

Re (×10−6) (X∗/C)tr N Freq. (Hz) λz (mm) N λz (mm)

2.4 0.5 11.0 100 13 7.74 12
3.2 0.3 10.5 200 8 7.3 9

Table 2. N-factor results for primary instability modes.

these stationary disturbances is then analysed for secondary instabilities. Transition
correlations based on the nonlinearly computed primary disturbance amplitudes and
secondary N-factors are then presented.

4.1. N-factor correlation based on primary instability

The N-factor curves based on linear growth rates of the (primary) stationary and
travelling crossflow modes were computed using PSE (equations (3.10)–(3.12)). The
N-factor correlations based on these results and the measured transition locations
from table 1 are presented in table 2. The table also shows the spanwise wavelength
which yields the highest N-factor at the transition location.

The N-factors based on the linear growth of primary disturbance modes are
independent of the roughness height, being entirely determined by the Reynolds
number involved. As such, this type of correlation cannot account for the significant
measured shift in the transition location when the roughness parameters are varied.
An absolute amplitude criterion that combines these N-factors with any available
receptivity information (see Crouch 1997 for a related approach) has, in general,
the potential to account for the influence of roughness size on transition location.
However, a criterion of this type cannot explain the relative insensitivity of the



94 M. R. Malik, F. Li, M. M. Choudhari and C.-L. Chang

0.20

0.15

0.05

0 0.1 0.2 0.3 0.4 0.5

Based on theoretical Cp

X*/C

0.10

A
m

pl
it

ud
e

Based on experimental Cp
Experiment

Figure 2. Comparison of measured and computed peak disturbance amplitudes (Case I-A).

transition location to the height of the artificial roughness observed in the ASU
experiment referred to above. This insensitivity is attributed to the strongly nonlinear
development of primary instability in the experiments by Reibert et al. (1996) and
by Carrillo et al. (1996). Clearly, only those prediction methods which include some
information about the initial disturbance spectrum and also retain the effects of
disturbance nonlinearity can have the potential to explain the findings from the
ASU experiment. Two of the main options that meet the above requirements are
transition correlations based on the absolute amplitude of the primary disturbance
and linear N-factors for the secondary instability of the boundary-layer flow distorted
nonlinearly by the primary modes.

4.2. Nonlinear evolution of stationary disturbances

Nonlinear PSE calculations were carried out with boundary-layer profiles computed
with both the theoretically determined pressure distribution and that measured in the
experiment. In general, disturbance amplitude evolution computed using the measured
distribution of the pressure coefficient, Cp, agreed better with the experimental data
for large chordwise distances and large primary wave amplitudes where secondary
instability is likely to set in. (See figure 2, wherein we have plotted the peak amplitudes
of the fundamental and its two higher harmonics against the chordwise coordinate
for Case I-A). Accordingly, all of the subsequent results in this paper are based on
mean boundary-layer flow computed with the measured Cp distribution.

The PSE marching procedure was initiated slightly downstream of the attachment
line location but upstream of the first hot-wire measurement station at X∗/C = 0.05.
The effect of initial amplitude on the growth of the stationary disturbances with
λz = 12 mm is shown in figure 3. When the initial amplitude for the chordwise
velocity component is less than or equal to 10−6, the nonlinear evolution differs little
from the linear theory result within the computational domain. At such low initial
amplitudes, the disturbances amplify by a factor of e8.8 up to X∗/C = 0.7. When the
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Figure 3. Effect of initial amplitude on the N-factor of stationary crossflow disturbances with
λz = 12 mm for the ASU wing (using nonlinear PSE).

initial amplitude is 10−4, the nonlinear PSE results begin to depart from the linear
result at X∗/C ≈ 0.45 where the disturbance has reached an amplitude of about 4%.
The onset of nonlinear effects at crossflow amplitudes of around 4% is consistent
with the results of Malik et al. (1994) for the swept Hiemenz flow.

Since the results for receptivity to the imposed roughness were not available,
a suitable guess for the initial amplitude of the fundamental spanwise harmonic
(λz = 12 mm for Cases I-A–I-E and λz = 8 mm for Case II-E) was used for the
nonlinear PSE calculations described here. A total of 32 spanwise Fourier modes
were included and the initial amplitudes of all higher harmonics (as well as of the
mean flow correction) were set equal to zero for the calculations described in this
paper. The adequacy of the number of Fourier modes was ascertained a posteriori by
examining the decay of the computed disturbance spectrum at large wavenumbers.
The guessed value of the initial fundamental amplitude was sequentially altered until
the required match with the experimentally measured amplitudes was obtained. As
described later, this usually involved a matching between the fundamental amplitudes
at X∗/C = 0.10. A considerable effort was expended to convert the theoretically
predicted disturbance velocity profiles to a form where a direct comparison could be
made with the hot-wire data. In particular, a sequence of coordinate transformations
was required to account for the two probe rotations (used to align the wire with
the airfoil surface) and for the direction of hot-wire traversal. (See Reibert 1996 and
Haynes 1996.) Hence, when we present the amplitudes of the primary waves, we mean
the component of velocity in the direction in which the hot wire is most sensitive.
This is usually different from ũ, ṽ, or w̃.
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Figure 4. Comparison between computed and measured disturbance evolution. Peak modal ampli-
tudes are plotted: (a) Case I-A; (b) Case I-B; (c) Case I-C; (d) Case I-D; (e) Case II-E; (f) Case
II-E but the calculation is designed to show the suppression of naturally dominant crossflow modes
in the presence of an artificially introduced 8.25 mm mode (top curve). For this case, the legend is
as follows: solid lines: amplitudes of stationary modes with wavelengths of 16.5, 11, and 8.25 mm,
respectively; dashed lines: amplitudes of 16.5 and 11 mm modes in the absence of the 8.25 mm
mode.

Figure 4 shows the amplitudes of the fundamental and its two harmonics at the
wall-normal location that corresponds to the peak in the disturbance profile for
Cases I-A–I-D and II-E. The disturbance amplitudes have been scaled by the local
boundary-layer edge velocity. In all cases except I-B and II-E, the initial disturbance
amplitude was adjusted to match the experimental value of the fundamental amplitude
at X∗/C = 0.10. An inspection of figure 4(b) indicates a local anomaly in the measured
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fundamental at X∗/C = 0.10 for Case I-B; therefore, the amplitude at X∗/C = 0.15
was used to determine the appropriate initial amplitude for the PSE calculation.
The remarkably good agreement between theory and the experimentally measured
amplitudes is, in our opinion, a tribute to the care and thoroughness behind the
ASU experiment. The computed disturbance mode-shape profiles (plotted in figure
5 for Case I-A) also exhibit the same features as the profiles measured during
the experiment, as well as those computed by Malik et al. (1994) for the swept
Hiemenz flow. Good agreement with the experimental data was also reported in
the earlier calculations by Haynes & Reed (1996), although they used the computed
Cp distribution (see figure 1) in their analysis. It may be noted here that, in spite
of the strongly stabilizing influence of nonlinearity, the disturbance amplitude in
Case I-A increases monotonically all the way up to the measured transition location.
On the other hand, increased nonlinear effects in Cases I-B and I-C lead to a
local plateau in amplitude evolution wherein the disturbance amplitude changes very
slowly, and even (locally) decreases with X∗/C in Case I-C. The flat or non-monotonic
character of amplitude evolution, found both in the experiment and computation, is
an indication of the large uncertainty that would be inherent in a transition prediction
method based on the absolute disturbance amplitude. The non-monotic character of
amplitude evolution can also be found in the results presented by Malik et al. (1994)
for the swept Hiemenz flow.

The computed disturbance evolution for Case I-D is shown in figure 4(d). In this
case, experimental results are given at five chordwise locations as compared to eight
to ten in Cases I-A–I-C. However, in the light of the good agreement for Cases
I-A–I-C, it is not unreasonable to expect good agreement for Case I-D had more
experimental points been given.

We next present nonlinear PSE results for Case II-E in figure 4(e). The fundamental
mode in this calculation has a wavelength of 8 mm, i.e. the wavelength of the



98 M. R. Malik, F. Li, M. M. Choudhari and C.-L. Chang

forced roughness. The higher harmonics have wavelengths of 4, 8/3, 2, 8/5 mm, etc.
Note that these do not contain the natural mode (with no intentional forcing) of
11 mm wavelength observed in the experiment. With these conditions specified, a
faithful computer has no way of generating any perturbation with a component in
the 11 mm mode. In order to obtain a better agreement with the measured peak
amplitudes, the matching of the respective amplitudes in figure 4(e) was carried out at
X∗/C = 0.25. Overall satisfactory agreement with the experimental data is observed
in this case. However, some differences in r.m.s. amplitude (not shown) was noted
in the downstream part of the measurement domain (X∗/C > 0.40). The measured
amplitudes in the downstream region are dominated by naturally occurring crossflow
modes with longer spanwise wavelengths which were not included in the calculation.
However, the objective of the present analysis was to provide a theoretical explanation,
based on secondary instability analysis, for the downstream shift in the transition onset
location due to artificially introduced stationary crossflow disturbances. Accordingly,
the secondary instability analysis for this case will be focused on the region upstream
of 40% chord, wherein the stationary disturbance amplitudes are dominated by the
artificially introduced disturbance.

In the experiment, the 8 mm mode is triggered by the roughness and has the
largest amplitude initially, but the 11 mm mode will creep in because of some random
excitation due to, perhaps, finer roughness on the wing surface introduced during
the manufacturing process. We call a disturbance introduced this way the naturally
occurring mode. Even though this mode has very small initial amplitude, it could
eventually become the most significant mode because it has the largest growth rate. At
this point, the computation starts to deviate (not shown) from the overall experimental
results since the former do not contain all the modes.

In order to show that forcing a mode with 8 mm wavelength indeed suppresses the
growth of the naturally occurring 11 mm mode (with wavelength close to the most
amplified mode), we concocted a computational case with modal wavelengths of 33,
16.5, 11, 8.25 mm, etc. The 11 mm mode is chosen since a peak in the experimental
spectrum is observed at this wavelength, downstream of X∗/C ≈ 0.4. The 8.25 mm
mode is close to the forced 8 mm mode. The results of this calculation are shown in
figure 4(f) where the initial amplitude assigned to the 11 and 16.5 mm modes is an
order of magnitude smaller than the 8.25 mm mode. It can be seen that the growth
of the 11 and 16.5 mm modes slows down due to the presence of the 8.25 mm mode.

The disturbance evolution results for Case I-E have not been shown because
detailed measurements of disturbance amplitudes were not available. The initial
crossflow amplitude in this case was determined from the corresponding value for
Case I-D, by assuming the receptivity to be a linear function of the roughness height.
The accuracy of this assumption is largely inconsequential in this case, since the
observed transition location is nearly insensitive to the initial disturbance amplitude.

Receptivity calculations would have eliminated the need for the rather ad hoc
matching between the experimental and computed results presented above. However,
the extra effort involved was deemed unnecessary since we are interested in the
secondary instability of the mean flow modified by the presence of primary crossflow
disturbances and the above mentioned matching procedure yields the ‘correct’ basic
state for the secondary instability analysis. We note here in passing that the initial
disturbance amplitudes needed to obtain good overall agreement with the experiments
increased at a slower than linear rate when the roughness height was increased from
6 to 48 µm. This finding tends to indicate a nonlinear receptivity mechanism for the
larger roughness heights used in the experiment.
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4.3. Secondary instability modes

In general, nonlinear effects tend to reduce the amplification rate of a given crossflow
vortex mode below its linear value, causing the vortex evolution to quasi-saturate at
sufficiently large amplitudes. Because of the chordwise variation in the underlying
boundary-layer flow, the saturation behaviour actually amounts to a relatively slow
variation in the disturbance amplitude along the chordwise direction. The nonlinearly
distorted mean flow, which exhibits a highly inflectional behaviour in the wall-normal
and spanwise directions, typically supports high-frequency (i.e. an order of magnitude
higher than the frequency range of travelling crossflow modes) secondary instability
modes. As noted in § 3.3, the analysis of secondary instability modes is simplified by
rotating the coordinate axes along the surface such that one of them (namely x1) is
aligned with the (approximate) direction of the vortex axis. After invoking the quasi-
parallel assumption along this direction, one obtains a two-dimensional eigenvalue
problem in the plane transverse to the vortex axis (i.e. the (x2, x3)-plane, where x2

denotes the surface-normal coordinate and the x3-axis is chosen to be normal to the
vortex axis. Spatial discretization of the relevant partial differential equations leads to
an algebraic eigenvalue problem that was solved for the complex frequency parameter
ωs as a function of real wavenumber αs along the x1-direction.

Results of the secondary instability analysis for Case I-A (i.e. Re = 2.4× 106, λz =
12 mm, k = 6 µm) are shown in figures 6(a)–6(d). Results were obtained at several
locations but only those which correspond to chordwise locations of X∗/C = 0.35
and 0.45 are shown here. The (dimensional) temporal growth rates (Im (ωs)U0/l) of
the secondary instability modes are shown in figures 6(a) and 6(c); the corresponding
phase velocity (Cph = Re (ωs)U0/αs) variation is indicated in figures 6(b) and 6(d).
Similar results for Cases I-B–I-E, and II-E were obtained but are only shown for
Case I-C here (figure 6e, f).

At locations where the stationary crossflow amplitudes are quite substantial, there
exist as many as six or seven modes of secondary instability. An energy budget
calculation (see below) indicates that the disturbance energy production of any given
mode is typically dominated by energy transfer associated with either the surface-
normal or the spanwise gradients of mean axial velocity distribution U1(x2, x3).
Accordingly, each mode can usually be classified as being an ‘x2’ or a ‘x3’ mode. In
practice, ‘y’ and ‘z’ are usually used to denote these directions, therefore we will also
refer to these modes as ‘y’ and ‘z’ modes. This is akin to the ‘horseshoe’ and the
‘sinuous’ modes of the Görtler vortex problem (e.g. Swearingen & Blackwelder 1987;
Li & Malik 1995).

Let us first analyse the secondary instability results for Cases I-A–I-C. The two
dominant modes of secondary instability in each of these cases are found to be a
‘y’ mode and a ‘z’ mode, respectively. Typical eigenfunctions for these two classes of
modes are illustrated in figures 7(a) and 7(b) respectively. For reference, contours of
the mean axial velocity distribution U1(x2, x3) for the corresponding basic state are
plotted in figure 8(a); the distributions of the shear rate in the x2- and x3-directions
are shown in figures 8(b) and 8(c), respectively. The peak growth rates of the ‘y’ mode
were generally found to be higher except in some regions where the ‘z’ mode had
higher growth rate. The peak growth rates of the ‘z’ mode occur around a frequency
of 3500 Hz, whereas the peak growth rates of the dominant ‘y’ mode occur near
a somewhat higher frequency of 4500 Hz. The secondary instability frequency can,
in general, be estimated by Ue/λp (assuming the phase speed Cr = Cph/Ue = 1 and
λs = λp) where λp is the wavelength of the primary disturbance. This rule of thumb
yields a frequency of about 3 kHz, which is quite close to the computed values. The
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Figure 7. Magnitude of normalized axial velocity eigenfunction u1 for the secondary instability
mode at X∗/C = 0.4 for Case I-A (10 equispaced contours in the range |u1| ∈ [0.1, 1.0]). (a) ‘y’
mode; (b) ‘z’ mode.

frequency range of the ‘z’ modes is consistent with that measured by Kohama et
al. (1991) in the same facility at slightly different values of Reynolds number and
wavelength of dominant crossflow mode. Thus, it is likely that, in spite of the higher
overall growth of the ‘y’ mode, transition was actually caused by the ‘z’ mode, possibly
as a result of the peculiarities of the disturbance environment in the facility and/or
the receptivity characteristics of the boundary-layer flow. Recent experimental results
reported by Kawakami, Kohama & Okutsu (1999) show the secondary structure
similar to that in figure 7(b), indicating that the ‘z’ mode was observed in that
experiment. For the relative importance of ‘y’ and ‘z’ modes in the Görtler vortex
problem, the reader is referred to Li & Malik (1995). It appears that the state of
the boundary layer, as modified by the crossflow vortices, may yield both ‘y’- and
‘z’-type modes. However, the parameters which give dominance to one or the other
need further investigation. Since the experiment appears to favour the ‘z’ mode, we
will use this mode for the transition correlation studies whenever this mode is found
to be substantially unstable in our computations.

In order to further understand the mechanism of secondary instability modes, we

Figure 6. Temporal growth rate (dimensional) and phase speed, Cph/U∞, of secondary instability
modes. Here U∞ is the free-stream velocity. The solid line represents the ‘y’ mode. The other
dominant mode (dashed line) is of ‘z’ type. The dotted and dash-dot lines are for the additional
secondary instability modes. (a, b) Case I-A, X∗/C = 0.35; (c, d) Case I-A, X∗/C = 0.45; (e, f)
Case I-C, X∗/C = 0.45.
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Figure 8. Contours of mean axial velocity distribution U1, traverse shear and spanwise shear
at X∗/C = 0.4 for Case I-A: (a) U1 (22 equispaced contours in the range U1/U∞ ∈ [005, 1.1];
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equispaced contours at in the range ∂U1/∂X3 ∈ [−0.4, 0.2]). Dashed contours show negative values.
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where i = 1, 2, 3. Integrating the above equation over one wavelength and across the
boundary layer, we get

2ωsiE =
dE
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= P − D, (4.2)
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where ωsi = Im(ωs) and the energy E is given by
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First we show in figure 9(a) that the growth rates obtained by the eigenvalue
analysis and that from (4.2) above are quite close. Here, we only show the dominant y
and z modes but similar results may be found for other modes. Figures 9(b) and 9(c)
show the contribution of various production terms to y and z modes. It is clear that
the dominant production term for the y mode is −〈u1u2〉∂U1/∂x2 while the dominant
production term for the z mode is −〈u1u3〉∂U1/∂x3, where 〈 • 〉=∫ 2π/αs

0
• dx1. The

contours of these dominant terms are plotted in figures 10(a) and 10(b), respectively.
Comparison with figures 7(a) and 7(b) clearly shows the significance of the wall-
normal shear for the y mode and the spanwise shear for the z mode.

The results presented earlier in figure 6(a–f) show that the overall growth charac-
teristics of the secondary instability modes are rather intricate. Multiple peaks in the
growth rate curve for a given mode of secondary instability are quite common. In
some exceptional cases, one even finds a near coalescence between the local dispersion
relationships for two different modes. Although this has not been further investigated
here, a modal degeneracy of this kind would imply a combined algebraic and expo-
nential growth for the instability model in the vicinity of the crossover location. The
modal degeneracy of the secondary instability modes has also been noted by Koch
(1992) in the context of Blasius flow and recently by Janke & Balakumar (1998) for
a three-dimensional boundary layer.

The secondary instability results for Cases I-D and I-E (not shown) involve the
higher chord Reynolds number of 3.2×106. Because of the relatively thinner boundary
layers in these cases (due to both the higher Reynolds number and the upstream
transition location), the gradients in the surface-normal direction are more important
than the gradients along the vortex wavenumber (i.e. x3) direction. This is probably
why the secondary instability in Cases I-D and I-E primarily involved the ‘y’ type
modes. Similarly, because of the increased free-stream speed and the thinner boundary
layer, the band of most unstable secondary instability modes was observed to shift
towards higher frequencies in the above two cases. We also note here that our earlier
work (Malik, Li & Chang 1996) for Poll’s (1985) swept-cylinder experiment found
secondary disturbances in the neighbourhood of 17 kHz which is in good agreement
with Poll’s observations. These disturbances were found to be of ‘y’-type in our
computation. However, the experiment only recorded a high-frequency signal in the
hot-wire trace without any explanation.

4.4. Transition correlations based on the amplitude method and secondary N-factors

The eigenvalue calculations described in § 4.3 were used to compute the N-factor
curves (i.e. curves that depict the chordwise variation of spatial amplification ratio)



Secondary instability of crossflow vortices 105
1000

800

600

400

200

0 0.5 1.0 1.5 2.0 2.5 3.0

(a)

G
ro

w
th

 r
at

e 
(s

–1
)

z-
m

od
e

y-
m

od
e

3000

2000

1000

0

–1000
0 0.5 1.0 1.5 2.0 2.5 3.0

(b)

P
ro

du
ct

io
n/

en
er

gy
 (

s–1
)

The rest of the production terms

∫∫ – -u1u2.∂U1/∂x2dx2dx3

∫∫ – -u1u3.∂U1/∂x3dx2dx3

4000

2000

0

–2000
0 0.5 1.0 1.5 2.0 2.5 3.0

(c)

P
ro

du
ct

io
n/

en
er

gy
 (

s–1
)

α*
s (mm–1)

The rest of the production terms

∫∫ – -u1u3.∂U1/∂x3dx2dx3

∫∫ – -u1u3.∂U1/∂x2dx2dx3

Figure 9. Secondary disturbance growth rate and various production terms for Case I-A at
X∗/C = 0.4. (a) Growth rate from eigenvalue calculation (solid line) and the integral energy
equation (dashed line); (b) production terms for the y mode; (c) production terms for the z mode.



106 M. R. Malik, F. Li, M. M. Choudhari and C.-L. Chang

6

4

2

0 5 10 15

(a)

X
* 2
(m

m
)

6

4

2

0 5 10 15

(b)

X
* 2
(m

m
)

X*
3 (mm)

Figure 10. Contour plots of the production terms for Case I-A, X∗/C = 0.4.
(a) −〈u1u2〉∂U1/∂X2, αs = 1.4 mm−1; (b) −〈u1u3〉∂U1/∂X3, αs = 1.2 mm−1.

0.05

0 2000

0.04

0.03

0.02

0.01

4000 6000 8000 10000

Based on group velocity

Based on phase velocity

Frequency (Hz)

G
ro

w
th

 r
at

e 
(m

m
–1

)

Figure 11. Comparison of spatial amplification rates based on group velocity and phase velocity,
respectively, of secondary instability modes (Case I-C, X∗/C = 0.35).



Secondary instability of crossflow vortices 107

for the secondary instability modes. Conversion of temporal amplification rates to
spatial ones was accomplished using the approximation suggested by Gaster (1962).
This transformation, which is based on a Taylor series expansion of the dispersion
relation about the real frequency axis, uses the group velocity of the disturbance to
convert the disturbance growth in time to growth in space. However, because the
secondary instability modes are nearly non-dispersive and the phase velocity of these
modes is nearly the same as their group velocity, the phase velocity was used instead
during the above transformation. The accuracy of this approximation can be gleaned
from the sample comparison plotted in figure 11.

Typically, N-factor correlation for a given flow is obtained by integrating either
the maximum local growth rate of any instability mode (the ‘envelope’ method) or
by maximizing over the local amplification ratio (i.e. integrated growth rate) of a
fixed disturbance entity. The latter method, which makes more physical sense, was
used earlier to obtain the N-factor curves for primary instability modes. However,
it cannot be easily implemented within the context of secondary instability modes,
because of the relatively sparse streamwise locations at which the secondary instability
analysis was carried out. Because of the difficulties involved in establishing topological
connections between the various modes at any pair of adjacent chordwise locations,
the N-factor curves were computed by lumping together all the modes of a given
type (i.e. all ‘y’ or all ‘z’ modes). Thus, the local growth rate of the secondary
instability at a given physical frequency was determined through maximization over
all the unstable modes of a specified type. As with the N-factor correlation based
on primary instability, the maximum value of the N-factor at the experimentally
determined transition location was used for the purposes of correlation.

Implicit in the above procedure is the assumption that the most unstable mode of
a given type represents the same disturbance entity at all chordwise locations. An
examination of the relevant eigenfunctions and the overall growth rate behaviour
suggests that the above assumption is a reasonable one. However, it is difficult to
guarantee its validity in view of the multiple number of unstable modes present in
the problem (as well as the occasional mode crossing involved). We also wish to note
that, for a given set of test conditions, the shift in the peak growth rate frequency
with respect to chordwise location is relatively small. Hence, the N-factor correlation
obtained with the above technique is also expected to be close to that based on the
envelope method (wherein the growth rate is maximized locally with respect to all
unstable modes and all relevant frequencies).

Secondary ‘z’ mode N-factor results for Cases I-A–I-C are given in figure 12(a–c).
Within the region of secondary instability, the peak linear growth rates of the
secondary instability modes tend to be significantly larger than those of the primary
modes. For instance, in Case I-A, the N-factor for the secondary modes increases
by nearly 8 between the range of locations X∗/C ∈ [0.35, 0.50]. The corresponding
increase in the N-factor for the (linear) primary instability is approximately 2. Of
course, because of the nonlinear effects, the actual increase in the amplitude ratio for
the primary modes is even smaller. The above comparison confirms the rapid onset
of the secondary instability and, hence, lends credence to the use of the quasi-parallel
assumption for the nonlinearly distorted boundary-layer flow.

The N-factor correlations obtained by combining the secondary instability results
with the experimental data of table 1 are summarized in table 3. Also included in
table 3 are the computed values of the primary disturbance amplitude at measured
transition locations (except for Case II-E) and the associated N-factor (nonlinear)
based on the integral of the disturbance kinetic energy. The primary disturbance



108 M. R. Malik, F. Li, M. M. Choudhari and C.-L. Chang

12

10

8

6

4

2

0
0.1 0.2 0.3 0.4 0.5

N

2000 Hz
2500 Hz
3000 Hz
3500 Hz
4000 Hz

(a)

12

10

8

6

4

2

0
0.1 0.2 0.3 0.4 0.5

N

2500 Hz
3000 Hz
3500 Hz
4000 Hz
4500 Hz

(b)

12

10

8

6

4

2

0
0.1 0.2 0.3 0.4 0.5

X/C

N

2500 Hz
3000 Hz
3500 Hz
4000 Hz
4500 Hz

(c)

Figure 12. N-factor curves for the ‘z’-type secondary instability modes.
(a) Case I-A; (b) Case I-B; (c) Case I-C.



Secondary instability of crossflow vortices 109

Secondary modes Primary modes

Transition Amplitude
location Freq.y Freq.z (total Amplitude

Case (X∗/C)tr Ny (kHz) Nz (kHz) r.m.s.) (modal) Nprimary

I-A 0.52 11.2 4.5 9.4 3.0 0.188 0.175 5.82
I-B 0.51 11.0 4.5 10.0 3.5 0.185 0.180 5.01
I-C 0.49 10.9 4.5 8.9 3.5 0.179 0.173 4.24
I-D 0.32 4.2 7.0 — — 0.166 0.151 5.66
I-E 0.30 6.5 8.5 — — 0.171 0.148 4.56

II-E 0.70 — — 3.3† 2.5 0.102† 0.101† —

† Value at X∗/C ≈ 0.35.

Table 3. N-factor results at (X∗/C)tr for secondary instability modes and the amplitudes of the
primary modes.

amplitudes quoted herein reflect the computed approximations to experimentally
determined amplitudes. Based on the streamline orientations in the mid-chord region,
we expect the above approximations for amplitude to be nearly the same as that
based on the peak velocity perturbation (normalized by the local edge velocity) along
the direction of the inviscid streamline.

It should be noted here that, while transition occurred at X∗/C = 0.7 for Case
II-E, secondary instability calculations were performed only up to X∗/C ≈ 0.35
where the secondary N-factor reached a value of 3.3. This value of the N-factor
is considerably smaller than the N-factor values that correlate with the transition
onset location in the other cases, confirming the experimental finding that transition
is delayed in the presence of artificial roughness with wavelength smaller than the
dominant wavelength. Computation of secondary instability in the region downstream
of X∗/C > 0.35 will require a new basic-state calculation that includes the naturally
occurring crossflow disturbances as noted in § 4.3. Nonlinear PSE calculations of this
type were performed which showed the suppression of longer wavelength stationary
modes by the shorter wavelength forced mode. However, the secondary instability
calculation for the broadband basic state requires substantially larger computer
memory and CPU time and, therefore, was not attempted during the present study.

Let us now examine the N-factor results for Cases I-A–I-E. First observe that the
variation in secondary instability N-factor with respect to roughness height is small
when all the data points at a fixed Reynolds number are considered, except that the
values of N-factors for the Re = 3.2 × 106, cases (namely I-D and I-E) are smaller
than those at Re = 2.4 × 106. Fortunately, this discrepancy does not have serious
consequences. Because of the rapid growth of secondary instability modes, especially
at Re = 3.2 × 106, using a larger value for the N-factor will simply lead to a small
downstream shift in the predicted transition location. We obtain the optimal value
of N-factor for the set of Cases I-A–I-E by minimizing the root-mean-square (r.m.s.)
error in the predicted transition location, where r.m.s. error is defined as{ ∑

overall cases

(xtr-measured − xtr-predicted)2

n

}1/2

,

where n is the number of cases. To help determine this optimum value, in table 4 we
present the predicted transition locations for various assumed values for the N-factor.
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Secondary N-factor

Case (X∗/C)tr Type 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

I-A 0.52 y 0.497 0.488 0.479 0.469 0.460 0.450 0.441 0.431 0.422
I-B 0.51 y 0.490 0.480 0.469 0.457 0.445 0.431 0.419 0.407 0.396
I-C 0.49 y 0.465 0.451 0.435 0.420 0.405 0.390 0.381 0.367 0.356
I-A 0.52 z — — — 0.500 0.489 0.481 0.471 0.462 0.452
I-B 0.51 z — 0.497 0.486 0.476 0.468 0.459 0.451 0.443 0.433
I-C 0.49 z — — 0.493 0.476 0.464 0.453 0.444 0.433 0.422
I-D 0.32 y 0.388 0.382 0.376 0.370 0.364 0.358 0.352 0.347 0.340
I-E 0.30 y 0.355 0.347 0.339 0.322 0.330 0.315 0.307 0.300 0.292

Table 4. Transition correlation based on N-factor for secondary instability modes.

Total r.m.s. primary amplitude

Case (X∗/C)tr 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

I-A 0.52 0.310 0.332 0.356 0.382 0.408 0.435 0.464 0.497 —
I-B 0.51 0.247 0.262 0.296 0.359 0.378 0.395 0.425 — —
I-C 0.49 0.212 0.225 0.243 0.340 0.362 0.380 0.404 — —
I-D 0.32 0.223 0.232 0.241 0.250 0.268 — — — —
I-E 0.30 0.163 0.172 0.179 0.183 0.195 0.208 0.392 0.408 0.425

Table 5. Transition correlation based on total primary amplitude.

Modal primary amplitude

Case (X∗/C)tr 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

I-A 0.52 0.315 0.342 0.373 0.403 0.430 0.465 0.489 — —
I-B 0.51 0.249 0.270 0.352 0.375 0.392 0.420 — — —
I-C 0.49 0.215 0.230 0.339 0.360 0.380 0.400 — — —
I-D 0.32 0.225 0.233 0.244 0.258 — — — — —
I-E 0.30 0.164 0.175 0.180 0.190 0.205 0.412 0.428 0.450 —

Table 6. Transition correlation based on modal primary amplitude.

Analogous data for the transition criterion based on the total and modal amplitudes
of the primary disturbance are presented in tables 5 and 6, respectively. Variation of
the root-mean-square error in the predicted transition location as a function of the
N-factor and the total or modal disturbance amplitude is plotted in figures 13(a) and
13(b), respectively.

A comparison between figures 13(a) and 13(b) shows that the expected error
in transition prediction based on secondary instability growth rates is significantly
smaller than that based on the primary disturbance amplitude. Indeed, the optimal
N-factor of 8.5 in the former case compares favourably with the experimental findings
of Kohama et al. (1996), who measured an N-factor of slightly more than 9 for the
secondary instability modes prior to transition. In addition, the secondary N-factor
criterion is seen to be more robust to variations in the basis of the correlation
(i.e. the optimal N-factor in figure 13a). For instance, within a band of N-factors
ranging from 8.5 to 6.0, the error in the predicted transition location remains within
a narrow band of approximately 3 to 4% of the airfoil chord (i.e. about 10% of the
mean transition location of X∗/C = 0.43). This is because the sensitivity is inversely



Secondary instability of crossflow vortices 111

0.20

0.15

0
5.5 6.0 6.5 8.0 8.5

N

(a)

0.10

0.05

7.0 7.5 9.0

-(
X

* N
/C

–
X

* tr
/C

)2 .
1/

2

0.20

0.15

0
0.11 0.12 0.13 0.16 0.17

Stationary crossflow amplitude

(b)

0.10

0.05

0.14 0.15 0.18

-(
X

* N
/C

–
X

* tr
/C

)2 .
1/

2

Total RMS

Modal

Figure 13. Expected error in transition prediction based on N-factor correlation for secondary
instability modes and primary disturbance amplitude. (a) secondary N-factors; (b) disturbance
amplitude.

proportional to the slope of the N-factor curve. It can be seen from figure 12(a–c)
that the value of the N-factor varies relatively rapidly with X∗/C and, therefore,
the predicted transition location varies little when the transition N-factor is changed
within a reasonable range. On the other hand, owing to its slow variation, the error in
transition prediction based on the primary disturbance amplitude increases relatively
rapidly as the assumed amplitude is reduced. This finding is consistent with our
earlier forecast that was based on the slow (and possibly non-monotonic) variation
in primary disturbance amplitude across a significant region upstream of transition
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location. Note that the error levels for the transition criteria based on both measures
of the primary amplitude (i.e. total and modal) are nearly the same, because, in all
of the five cases studied herein, the total primary disturbance amplitude is dominated
by its fundamental harmonic.

5. Discussion
Results from experimental measurements of disturbance evolution in a controlled

setting have been used to validate the advanced transition prediction tools and to
examine their potential for providing enhanced physical understanding and refined
predictive capability. Similar to the earlier findings by Radeztsky et al. (1993) in the
ASU facility, the measurements by Reibert et al. (1996) and Carrillo et al. (1996)
demonstrate the importance of including information about the initial disturbance
spectrum (i.e. the outcome of the receptivity phase) in the transition prediction process.
Even more significantly, their data show the inadequacies of an approach that is based
on just the receptivity and linear amplification phases, i.e. an approach that ignores
the nonlinear development of the primary instability modes. Two methods that meet
the above requirements and, hence, have the potential to successfully explain the
findings of Reibert et al. and Carrillo et al. were investigated in the present work.
These methods correlated the measured transition location with the nonlinearly
computed primary disturbance amplitude and with the N-factor based on linear
growth of secondary instability modes, respectively. The latter approach requires
additional effort as well as significantly higher computational resources in terms of
both memory and CPU time. However, at least within the limited context of the
experimental data points examined herein, the secondary N-factor approach delivers
more accurate and more robust transition onset predictions. Following additional
code development and continued increase in computer memory and speed, the above
technique would become more practical, at least as a means to obtain additional
insights during the final stages of the aerodynamic design process.

To further improve the reliability of the above technique, it is necessary to repeat
similar calculations for a larger set of experiments, preferably from more than a
single facility. The data sets by Radeztsky et al. (1993) in the same ASU facility
(which included a broader variation in the Reynolds number and the initial crossflow
amplitude), and the recent experiments by Kohama et al. (1996) (in which the
structure of the secondary instability was examined in further detail), as well as
Deyhle & Bippes (1996), are particularly promising in this regard. Also important
from the standpoint of practical applications are additional calculations involving
relatively broadband stationary crossflow disturbances. Analysis of these problems will
require larger computational resources, and/or the development of more sophisticated
computational procedures, or even additional simplifying assumptions that may be
specific to the case of interest.

During previous work in the ASU facility, Radeztsky et al. (1993) conducted a
comprehensive study of the effect of initial crossflow disturbance amplitudes on the
location of transition onset. Their results indicate that, for initial amplitudes that
are greater than some critical value but still relatively small, the transition location
moves progressively further upstream as the initial crossflow amplitude is increased.
However, the rate of upstream movement slows down at larger initial amplitudes,
almost asymptoting to a fixed transition location. Cases I-A–I-E examined herein fall
under the latter regime wherein the location of transition onset is nearly independent
of the roughness height. The present calculations must be extended to smaller initial
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amplitudes to confirm their ability to predict the downstream shift, in particular
towards the transition location measured in the absence of any artificial roughness.
The accompanying improvement in the accuracy of an amplitude criterion based on
the linear N-factors also needs to be quantified.

A possible shortcoming of the advanced transition prediction approaches examined
herein is the additional input required concerning the initial disturbance amplitudes.
These amplitudes vary linearly with the roughness height in the limit of small
roughness amplitudes. However, the initial amplitudes required to match the nonlinear
PSE results with the measured data were found to increase at a slower than linear
rate when the roughness height was increased from 6 µm (Case I-A) to 48 µm (Case
I-C).

Finally, additional experiments (see, however, the recent experiments of Kawakami
et al. 1999) that investigate the spatial structure of the secondary instability modes and
provide details of disturbance evolution across the transition region are necessary to
establish a firmer link between transition onset and secondary instability. Experiments
of this kind will also provide clues to the origin of the secondary instability as well
as helping us to identify the factors (besides the growth rates) that determine what
type of secondary instability mode will be observed in practice. Work needs to be
done on the receptivity of the boundary layer to the imposed disturbance field. This
would eliminate the need for the somewhat ad hoc matching of the initial amplitudes
used in the present study. The possibility of absolute instability of the secondary
modes remains to be investigated. Also required are spatial simulations that include
both stationary and non-stationary crossflow modes, as well as including the effect of
nonlinear interactions on the evolution of secondary instability. Resources required
for investigations of this type are relatively substantial, but so is the potential payback
in terms of increased physical understanding, and better methods for prediction and
control of transition in three-dimensional boundary layers. The work of Högberg &
Henningson (1998), which appeared after the first submission of this manuscript, is
a step in that direction. The direct Navier–Stokes simulations performed by these
authors were able to capture stationary/travelling crossflow mode interaction as well
as the high-frequency secondary instability predicted by Malik et al. (1994). Based on
their simulation results, they concluded that ‘. . . the streamwise location of the start
of transition should be well correlated with the neutral point of the high-frequency
instability, since the turn-on of the instability is quite rapid and high values of the
growth rate are reached quickly’. While the present results, and those of Malik et
al. (1994), indicate that the secondary instability grows relatively fast, the correlation
of transition onset location with the onset of secondary instability is not generally
supported by the present results. The r.m.s. error for the cases in figure 12 will be
substantial if the neutral location for secondary instability is used for the correlation
of transition onset.

6. Conclusions
We have used the parabolized stability equations (PSE) approach to investigate the

nonlinear development of stationary crossflow disturbances in an infinite-swept-wing
boundary layer. More specifically, the conditions of the experiments of Reibert et al.
(1996) and Carillo et al. (1996) are investigated. The nonlinearly distorted mean flow
is analysed for secondary disturbances using a two-dimensional eigenvalue approach.
The following conclusions can be drawn from this study:
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1. Computed results (present and those of Haynes & Reed 1996) for the evolution
of disturbance amplitudes are in good agreement with the experimental observations.

2. The distorted mean flow is subject to secondary instability and a number of
modes (up to 7) have been found. These modes belong to two basic families: one
associated with wall-normal shear and the other with the spanwise shear. In that
sense, these modes are akin to the ‘horseshoe’ and ‘sinuous’ modes of the Görtler
vortex problem.

3. Owing to the slow variation of crossflow disturbance amplitudes in the nonlinear
regime, an absolute amplitude based criterion does not yield a good correlation of the
transition onset location. In contrast, an N-factor approach based on the secondary
disturbance growth rates yields a much more robust correlation. The value of the
optimal secondary N-factor (∼ 8.5) is quite close to the experimental value found by
Kohama et al. (1996).

4. The present approach confirms the experimental finding that transition onset can
be delayed by suitably placed roughness with a spanwise wavelength that is shorter
than the wavelength of the most amplified (natural) disturbance in the boundary layer.

This work was carried out under a sub-contract from Boeing ZA0095 (NASA
Contract NASI-20267) with Dr Paul Johnson as the Technical Monitor. The authors
would like to thank Professor W. S. Saric, Dr Mark Reibert, and Mr Ruben Carrillo,
Jr for providing the data acquired in the ASU experiment. Thanks are also due to
Drs Ronald Radeztsky and Ray-Sing Lin, both of HTC, for their assistance with
interpretation of experimental data and global eigenvalue calculations, respectively.
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